

Mery Cecilia Gómez Marroquín

CARACTERIZAÇÃO E CINÉTICA DA REDUÇÃO DE FERRITA DE ZINCO PRESENTE EM POEIRAS DE ACIARIA, POR MISTURAS CO-CO₂

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutorado pelo Programa de Pós-Graduação em Ciência dos Materiais e Metalurgia da PUC-Rio.

Orientador: José Carlos D'Abreu

Rio de Janeiro, Abril de 2008

Mery Cecilia Gómez Marroquín

CARACTERIZAÇÃO E CINÉTICA DA REDUÇÃO DE FERRITA DE ZINCO PRESENTE EM POEIRAS DE ACIARIA, POR MISTURAS CO-CO₂

Tese apresentada como requisito parcial para obtenção do título de Doutorado pelo Programa de Pós-Graduação em Ciência dos Materiais e Metalurgia da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. José Carlos D'Abreu Orientador DCMM-PUC-Rio

Prof. Hélio Marques Kohler Consultor Independente

Prof. Francisco José Moura DCMM-PUC-Rio

Prof. Roberto José de Carvalho DCMM-PUC-Rio

Prof. José Adílson de Castro Universidade Federal Fluminense-UFF

> Prof. Jose Eugenio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 24 de Abril de 2008

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Mery Cecilia Gómez Marroquín

Graduo-se em Engenharia Metalúrgica na "Universidad Nacional de Ingeniería-UNI" Lima-Peru em 1995, trabalhou em varias companhias peruanas de mineração. É Mestre em Engenharia Metalúrgica e de Materiais pelo DCMM-PUC-Rio (2004) e participou como expositor em diferentes eventos técnico-científicos na área de redução de minérios de ferro.

Ficha Catalográfica

Gómez Marroquín, Mery Cecilia

Caracterização e Cinética da Redução de Ferrita de Zinco Presente em Poeiras de Aciaria, por Misturas CO-CO₂ / Mery Cecilia Gómez Marroquín; orientador: José Carlos D'Abreu.- Rio de Janeiro : PUC, Departamento de Ciência dos Materiais e Metalurgia, 2008.

230 f. : il. ; 30 cm

Tese (Doutorado em Ciência dos Materiais e Metalurgia)– Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2008.

Inclui bibliografia

1. Ciência dos Materiais e Metalurgia - Teses. 2. Poeiras de Aciaria 3. Cinética de Redução 4. Ferrita de Zinco 5. Caracterização Estrutural. D'Abreu, José Carlos II. Pontifícia Universidade Católica de Rio de Janeiro. Departamento de Ciência dos Materiais e Metalurgia. III. Título

Cuando por los años no puedas correr, trota! Cuando no puedas trotar, camina! Cuando no puedas caminar, usa el bastón! PERO NUNCA TE DETENGAS! Maria Teresa de Calcutá (mensaje para vivir)

Ao Deus Nosso Senhor pela oportunidade de viver com saúde e uma família A minha mãe Rebeca, a grande heroína da minha historia de vida Ao meu pai Manuel e meus irmãos Isabel, Arturo e Rosa A minhas sobrinhas Naldy, Valery e Adriana Ao meu filho de coração

Agradecimentos

À CAPES, CNPq e FAPERJ pelo auxilio financeiro, sem os quais este trabalho e sua difusão a través dos diferentes eventos siderúrgicos não poderiam ter sido realizados.

À Pontificia Universidade Católica do Rio de Janeiro especialmente ao Departamento de Ciência dos Materiais e Metalurgia, representado por todos os professores, funcionários e alunos, pela oportunidade de ter freqüentado o curso de pós-graduação.

Ao meu orientador o Prof. José Carlos D'Abreu pela amizade, confiança, paciência, estímulo e oportunidade de desenvolver e difundir este trabalho.

Ao Prof. Helio M. Kohler pela amizade, paciência, estímulo, e sobre tudo sua grande ajuda na análise cinética de redução e correções na redação final desta tese.

Ao Prof. Guillermo Solórzano, pela amizade, paciência, e estímulo contínuo na apreensão de conhecimentos sobre caracterização microscópica via MET e redação deste item na tese, assim como também ao seu aluno Martin Mendoza pela sua ajuda na preparação/caracterização de amostras.

Aos membros da banca examinadora, grandes amigos e profissionais de primeira linha.

Aos colegas: Raimundo N. Rodrígues Filho pela condução das experiências de redução, habilitação e manutenção da linha experimental garantindo o seu funcionamento contínuo. Vítor Scultori, pela ajuda na preparação mecânica de amostras. Mauricio Otaviano pelo encaminhamento de alguns dos ensaios de

caracterização física, e Carlos Queiroz pelo apoio na determinação de massa específica dos materiais estudados.

A minha família e amigos que estão lá na minha querida pátria (Perú), porque sei que sem estar presente fisicamente, sempre estão torcendo por mim.

Aos amigos Orfelinda Avalo, Jair Linz da Silva, Mariella Berrocal e Raul Carita pela amizade incondicional, hospitalidade na minha chegada ao Brasil e encaminhamento no curso de pós-graduação.

Ao meu grande parceiro Jorge Cardenas, pelo carinho, paciência e cumplicidade, demonstrados nas horas incertas ao longo destes últimos anos.

Aos amigos e colegas que sempre estiverem comigo fazendo a sua parte neste período de vida: Mariella Berrocal, Orfelinda Avalo, Belenia Medina, Dammer Massa, Jorge Lafitte, Mônica Ari, Jorge Calderón, Marcio Paulo, Marcio Menesez, Octavio Ochoa, Wanda Ochoa, Carmen Gervacio, Lourdes Zaragoza, Richard Toribio, Bernabe Rebollo, Luzinetti Araújo, Edisom Campos, Janaina Gonçalves, Jose Henrique Noldin Junior, Denílson Araújo, Raimundo N. Rodrigues Filho, Mauricio Otaviano, Lesly Mamani, Jafet Carpio, Rafael Martinez, Ferry Belisario, entre outros que mesmo não foram mencionados estarei lhes sempre grata.

Resumo

Mery Cecilia Gómez Marroquín; José Carlos D'Abreu. Caracterização e Cinética da Redução de Ferrita de Zinco presente em Poeiras de Aciaria, por Misturas CO-CO₂. DCMM - PUC-Rio, 2008. 230p. Tese de Doutorado - Departamento de Ciência dos Materiais e Metalurgia, Pontificia Universidade Católica do Rio de Janeiro.

O presente estudo foca o comportamento da redução da ferrita de zinco produzida em laboratório e a contida nos pós de aciaria elétrica (PAE) pelo CO puro e misturas CO-CO₂, esta última tomada como exemplo de um caso real.

Este trabalho se iniciou com a caracterização dos principais compostos presentes no PAE (óxido de ferro (III), óxido de zinco e ferrita de zinco) usando técnicas, metodologias e equipamentos para caracterizações térmica (ATD-ATG), estrutural (DRX), microscópica (MEV-MET analise de EDS), física (porosidade do briquete, massa especifica, tamanho médio e área superficial específica das partículas) e química.

Constatou-se que as partículas dos materiais estudados são predominantemente de geometria esférica e, em particular o estudo via MET da ferrita de zinco, revelou aglomerados micrométricos e homogêneos tipo "clusters", formados por partículas arredondadas e constituídas por alguns monocristais com tamanhos da ordem de 100 nm.

Com a finalidade de estudar a cinética de redução da ferrita de zinco, foram realizados ensaios de redução por CO puro e misturas gasosas formadas por: 75%CO-25%CO₂ e 50%CO-50%CO₂ nas temperaturas de 1073, 1173, 1223, 1273 e 1373K. O tempo máximo de redução foi de 105 min. Os resultados obtidos permitiram propor uma seqüência cinética de redução, ao longo da qual os principais produtos de redução da ferrita de zinco foram caracterizados via MEV, visando estabelecer a fenomenologia/morfologia da redução.

Conclui-se que a fenomenologia morfológica e cinética da redução da ferrita de zinco, embora complexa, é similar a da redução dos óxidos de ferro, dependendo das composições gasosas, temperatura e tempo de reação. O estudo morfológico permitiu constatar que a redução da ferrita de zinco evidencia sua decomposição nos óxidos constituintes (ZnO e Fe₂O₃), na faixa de 1073 a 1273K e a redução seqüencial do óxido de zinco e dos óxidos de ferro. Os típicos produtos sólidos da redução são: óxido de zinco (ZnO), wüstita (FeO), óxidos mistos do tipo (Zn, Fe)O e ferro metálico. O estudo cinético estabeleceu ainda que ocorre uma rápida redução do óxido de zinco, liberando zinco gasoso, evidenciando a seguinte seqüência de redução: primeiramente, o óxido de zinco se reduz, seguido dos óxidos de ferro. Isto ocorre significativamente nas temperaturas entre 1223 e 1373K.

Estabeleceu-se um modelo geral de redução da ferrita de zinco usando a metodologia de superfície resposta (RSM), que envolveu o planejamento estatístico fatorial 3⁴ para avaliar a influência dos fatores preestabelecidos sobre a %Redução (temperatura e tempo de reação, composição gasosa, e massa da amostra).

Os modelos cinéticos que melhor ajustaram os mecanismos de redução foram: o modelo de reação química de interface-simetria esférica, seguido pelo modelo exponencial de reação contínua, representados por: $1 - (1 - \alpha)^{1/3} = kt$ e $-\ln(1 - \alpha) = kt$, respectivamente.

O modelo de reação química de interface - simetria esférica, representado por: $1-(1-\alpha)^{1/3} = kt$ foi o que melhor adequou-se à redução da ferrita de zinco sintética. Os parâmetros cinéticos obtidos foram:

(a) 100%CO: Ea de 55,60 kJ/mol e A= 8,833 mHz;

(b) 75%CO-25%CO₂: Ea = 88,21 kJ/mol e A= 127,74 mHz;

(c) 50%CO-50%CO₂: Ea = 95,21 kJ/mol e A = 193,37 mHz;

De maneira similar, no caso da redução da ferrita de zinco presente no PAE, o modelo que melhor representou o processo, também foi o modelo de reação química de interface - simetria esférica, representado por: $1 - (1 - \alpha)^{1/3} = kt$, sendo, Ea (energia de ativação aparente) e A (constante pré-exponencial de Arrhenius), os parâmetros cinéticos obtidos: (d) 100%CO: Ea = 52,34 kJ/mol, e A=4,98 mHz;

(b) 75%CO-25%CO₂: Ea = 66,70 kJ/mol e A= 76,06 mHz;

(c) 50%CO-50%CO₂: Ea = 86,28 kJ/mol e A = 289,59 mHz.

A comparação entre as energias de ativação aparente, permitiu concluir que tanto a redução da ferrita de zinco sintética como a redução dos Pós de Aciaria Elétrica-PAE, tiveram como etapa controladora da reação global a redução dos óxidos de ferro, particularmente para a redução com 100%CO. No caso da redução com misturas CO-CO₂, isto não foi observado para a ferrita de zinco sintética, embora possa ser válida para os Pós de Aciaria Elétrica-PAE, considerando seu baixo teor de zinco. Assim, para o caso da redução da ferrita de zinco por misturas CO-CO₂, propõe-se como etapa controladora a redução simultânea do óxido de zinco e dos óxidos de ferro.

Palavras - chave

Poeiras de Aciaria; Cinética de Redução; Ferrita de Zinco; Caracterização Estrutural

Abstract

Mery Cecília Gómez Marroquín; José Carlos D'Abreu. Characterization and Zinc Ferrite contained into Steelmaking Dusts Reduction, by CO-CO₂ Gás Mixtures. DCMM - PUC-Rio, 2008. 230p. Doctoral Thesis -Departamento de Ciência dos Materiais e Metalurgia, Pontificia Universidade Católica do Rio de Janeiro

This work deals with the behavior of the synthetic zinc ferrite reduction as well as a case study for the same process using electric arc furnace dusts (EAFD). These processes were conducted under pure CO atmosphere and $CO-CO_2$ gas mixtures.

The research here reported onsets with the characterization of the compounds present in EAFD - Iron (III) oxide, zinc oxide and zinc ferrite - using techniques, methodologies and equipments for thermal characterization (DTA-TGA), structural (XRD), microscopic (SEM-TEM coupled to EDS), physical (briquette porosity, specific gravity, average size & particle specific surface) and chemical analysis.

It was found that the studied materials particles showed predominantly spherical geometry and in particular, the TEM scans in the zinc ferrite, reveled cluster type micrometric and homogeneous agglomerates formed from single crystal round particles having the size of circa 100 nm.

Aiming at the study of the kinetics of the zinc ferrite reduction experiments were conducted using synthetic and EAFD materials submitted to pure CO gas and mixtures of it with CO₂ in the following proportions: 75%CO-25%CO₂ e 50%CO-50%CO₂. The runs were conducted at the temperatures 1073, 1173, 1223, 1273 e 1373K and the maximum reaction time was 105 min. The obtained results permitted the proposal of a kinetic reduction reaction chain. In the course of the study, also, the main zinc ferrite reduction products were characterized by the SEM analysis. This analysis also permitted the process.

It was concluded that the morphological and kinetic zinc ferrite reduction, in spite being a complex process, it is similar to iron oxides reduction, meaning, dependent on the gaseous compositions, temperature and reaction times. The morphological prism permitted to propose that the zinc ferrite reduction denounces its instantaneous decomposition in their constituent oxides (ZnO and Fe₂O₃) when submitted to temperatures in the range of 1073 to 1273K and also the sequential reduction of zinc and iron oxides. The typical reduction products were zinc oxide (ZnO), wüstite (FeO) and mix oxides type (Zn, Fe) O and metallic iron. Again, the kinetic study established that a rapid reduction of the zinc oxide occurs, as compared to the other present oxides, through the

sequence: firstly the zinc oxide reduction takes place, and this is followed by the iron oxides reduction. The last processes occur significantly for temperatures in the range of circa 1223 to 1373K.

A general model of the zinc ferrite reduction by the gaseous mixture of $CO-CO_2$ was proposed using the response surface methodology (RSM) for the factorial analysis 3^4 . This was done evaluating the effect of the following variables: temperature, reducing atmosphere composition, specimen mass and reaction time over the %Reduction.

The kinetic models that presented the better adjustment for the reduction were the boundary chemical reaction model for spherical symmetry (BCRM-ss) with the equation

 $1 - (1 - \alpha)^{1/3} = kt$ and the model of simple exponential continuous reaction obeying the relation: $-\ln(1 - \alpha) = kt$.

The kinetic parameters obtained (Ea, apparent activation energy, and A, Arrhenius preexponential frequency fator) were for the first model, that is synthetic zinc ferrite:

(a) 100%CO gas: Ea=55,60 kJ/mol & A= 8,83 mHz;

(b) 75%CO-25%CO₂: Ea = 88,21 kJ/mol & A= 127,74 mHz;

(c) 50%CO-50%CO₂: Ea = 95,21 kJ/mol & A = 193,37 mHz.

And for the second material, zinc ferrite contained in the EAF dusts:

(a) 100%CO gas: Ea=52,34 kJ/mol & A= 4,98 mHz;

(b) 75%CO-25%CO₂: Ea = 66,70 kJ/mol & A= 76,06 mHz;

(c) 50%CO-50%CO₂: Ea = 86,28 kJ/mol & A = 289,59 mHz.

The comparison between the apparent activation energy obtained from the best fitting kinetic models permitted to conclude that the zinc ferrite reduction as well as the electric arc furnace dusts reduction global reactions rates are controlled by iron oxides reduction, this in particular for the case of the reduction with 100%CO. As for the reduction with the CO-CO₂ gas mixtures, this was not observed for the synthetic zinc ferrite, although, for the reduction of the electric arc furnace dust, this could be the case due to their low zinc content. Considering these facts and the experimental results of this work, it is suggested that the zinc ferrite reduction by $CO-CO_2$ gas mixtures has the global reaction rate controlled simultaneously by the reduction of both zinc and iron oxides.

Keywords

Steelmaking Dusts; Kinetic of Reduction; Zinc Ferrite; Structural Characterization.

Sumario

1. Objetivos	24
2. Relevância do tema	25
3. Revisão Bibliográfica	26
3.1. Introdução	26
3.2. Cinética de formação da ferrita de zinco	27
3.3. Geração da ferrita de zinco nas poeiras de aciaria	29
3.4. Caracterização das poeiras de aciaria	31
3.4.1. Caracterização microscópica, química e estrutural	32
3.4.2. Caracterização física	37
3.5. Processos do tratamento das poeiras de aciaria	38
3.6. Redução carbotermica de poeiras de aciaria	43
3.7. Aspectos termodinâmicos e cinéticos da redução carbotermica	44
3.7.1. Redução carbotermica do óxido de zinco	44
3.7.2. Redução carbotermica dos óxidos de ferro	49
3.7.3. Redução carbotermica da ferrita de zinco	54
3.8. Mecanismos de redução da ferrita de zinco pela mistura CO-CO_2	61
4. Técnicas Experimentais	73
4.1. Materiais, reagentes e equipamentos utilizados	73
4.2. Técnicas de caracterização e procedimento experimental	75
4.2.1. Caracterização Térmica	75
4.2.2. Caracterização Química Estrutural	76
4.2.3. Caracterização Microscópica	79
4.2.4. Caracterização Física	83
4.3. Produção pirometalúrgica de amostras de ferrita de zinco	86
4.4. Preparação das amostras	86
4.5. Aparato Experimental	87
4.6. Calculo da vazão de redução	88
4.7. Redução pelo CO puro e misturas CO-CO ₂	89
4.8. Planejamento experimental	90
4.8.1. Metodologia de Superfícies Resposta	91
4.8.2. Método Fatorial Estatístico 3 ⁴	91

5. Resultados e Discussões	94
(A) Caracterização dos materiais	94
5. 1. Caracterização Térmica	94
5. 2. Caracterização Química Estrutural	95
5. 3. Caracterização Microscópica	103
5. 3.1. Microscopia Eletrônica de Varredura	103
5. 3.2. Microscopia Eletrônica de Transmissão	139
5. 4. Caracterização Física	144
(B) Cinética de redução pelo CO puro e misturas CO-CO ₂	148
5.5. Modelos cinéticos de reação	148
5.6. Vazão de redução	151
5.7. Redução do óxido de zinco	152
5.8. Redução do óxido de ferro (III)	157
5.9. Redução da ferrita de zinco	163
5.10. Seqüência cinética de redução	168
5.11. Estudo de Caso - Redução de Pós de Aciaria Elétrica	176
5.12. Planejamento experimental para avaliação de efeitos dos	
fatores na redução da ferrita de zinco	182
5.13. Comentários e Discussões Finais	202
 Conclusões e Sugestões para trabalhos futuros 	203
6.1. Conclusões	203
(A) Caracterização dos materiais	203
(B) Cinética de redução pelo CO puro e misturas CO-CO ₂	204
6.2. Sugestões para trabalhos futuros	206
Referências Bibliográficas	207
Apêndices	218
Apêndice 1: Calculo das percentagens de redução	219
Apêndice 2: Refinamento do espectro de difração da amostra PAE	
pelo método de Rietveld	222
Apêndice 3: Cálculo dos erros ou desvios padrão, somatória e média	
dos erros ou desvios padrão ao quadrado, segundo o modelo de	
reação química de interface (simetria esférica) para a redução da	
ferrita de zinco e os Pós de Aciaria Elétrica-PAE.	225

Lista de Tabelas

Tabela 1 - Composição química elementar média das poeiras de aciaria, segundo entidades controladoras dos principais países desenvolvidos	35
Tabela 2 - Concentrações de compostos comuns nas poeiras de aciaria, segundo algumas usinas do mundo	36
Tabela 3 - Distribuição de fases mineralógicas dos elementos em maiores teores nas poeiras de aciaria	37
Tabela 4 - Principais processos pirometalúrgicos para o tratamento das poeiras de aciaria	40
Tabela 5 - Principais processos pirometalúrgicos em estudo no Brasil para tratamento das poeiras de aciaria	42
Tabela 6 - Fatores de estudo, código estatístico, unidades, níveis e valores usados no planejamento experimental 3 ⁴	92
Tabela 7 - Planejamento experimental 3 ³ para investigar o efeito de: temperatura, tempo de reação e composição gasosa, nas experiências de redução pelo CO puro e misturas CO-CO ₂	93
Tabela 8 - Analise quantitativa segundo o método Rietveld da síntese de ferrita de zinco a partir da mistura equimolar	98
Tabela 9 - Analise química de compostos e elementos presentes nos Pós de Aciaria Elétrica-PAE	100
Tabela 10 - Valores obtidos na análise quantitativa do MEV da amostra de óxido de ferro (III)	105
Tabela 11 - Valores obtidos na análise quantitativa do MEV da amostra de óxido de zinco	106
Tabela 12 - Valores obtidos na análise quantitativa do MEV da amostra de ferrita de zinco "Am15"	107
Tabela 13 - Analise quantitativa dos EDS em diferentes pontos das imagens MEV da Figura 31	110

Tabela 14 - Analise quantitativa dos EDS em diferentes pontos

das imagens MEV da Figura 33	112
Tabela 15 - Analise quantitativa dos EDS em diferentes pontos das imagens MEV da Figura 35	114
Tabela 16 - Analise quantitativa dos EDS em diferentes pontos das imagens MEV da Figura 37	116
Tabela 17 - Analise quantitativa dos EDS em diferentes pontos das imagens MEV da Figura 39	118
Tabela 18 - Analise quantitativa dos EDS em diferentes pontos das imagens MEV da Figura 41	120
Tabela 19 - Analise quantitativa dos EDS em diferentes pontos das imagens MEV da Figura 43	122
Tabela 20 - Analise quantitativa dos EDS em diferentes pontos das imagens MEV da Figura 45	124
Tabela 21 - Analise quantitativa dos EDS em diferentes pontos das imagens MEV da Figura 47	126
Tabela 22 - Analise quantitativa dos EDS em diferentes pontos das imagens MEV da Figura 49	128
Tabela 23 - Analise quantitativa dos EDS em diferentes pontos das imagens MEV da Figura 51	130
Tabela 24 - Analise quantitativa dos EDS em diferentes pontos das imagens MEV da Figura 53	131
Tabela 25 - Analise quantitativa dos EDS em diferentes pontos das imagens MEV da Figura 55	133
Tabela 26 - Analise quantitativa dos EDS em diferentes pontos das imagens MEV da Figura 57	135
Tabela 27 - Analise quantitativa dos EDS em diferentes pontos das imagens MEV da Figura 59	137
Tabela 28 - Resultados da composição química e caracterização física dos materiais estudados, para 7g de amostra	144
Tabela 29 - Resultados do cálculo da vazão ótima para os testes de redução pelo CO puro e misturas CO-CO ₂	151
Tabela 30 - Resultados da redução de ZnO pelo CO puro e misturas CO-CO ₂	152

Tabela 31 - Resultados de ajustes dos modelos cinéticos na redução de ZnO com100%CO	154
Tabela 32 - Resultados de ajustes dos modelos cinéticos na redução de ZnO com 75%CO-25%CO ₂	154
Tabela 33 - Resultados de ajustes dos modelos cinéticos na redução de ZnO com 50%CO-50%CO ₂	155
Tabela 34 - Parâmetros cinéticos obtidos na redução do ZnO pelo CO puro e misturas CO-CO ₂	155
Tabela 35 - Resultados da redução de Fe ₂ O ₃ pelo CO puro e misturas CO-CO ₂	157
Tabela 36 - Resultados de ajuste dos modelos cinéticos na redução de Fe ₂ O ₃ com 100%CO	159
Tabela 37 - Resultados de ajuste dos modelos cinéticos na redução de Fe $_2O_3$ com 75%CO-25%CO $_2$	159
Tabela 38 - Resultados de ajuste dos modelos cinéticos na redução de Fe $_2O_3$ com 50%CO-50%CO $_2$	160
Tabela 39 - Parâmetros cinéticos obtidos na redução do Fe $_2O_3$ pelo CO puro e misturas CO-CO $_2$	160
Tabela 40 - Energia de ativação aparente em kJ/mol obtidas na avaliação cinética por estágios da redução do Fe ₂ O ₃ pelo CO puro e misturas CO-CO ₂	162
Tabela 41 - Comparação de resultados de % Redução e % Metalização	162
Tabela 42 - Resultados da redução de ZnFe ₂ O ₄ pelo CO puro e misturas CO-CO ₂	163
Tabela 43 - Resultados de ajustes dos modelos cinéticos na redução de ZnFe ₂ O ₄ com 100%CO	165
Tabela 44 - Resultados de ajustes dos modelos cinéticos na redução de ZnFe ₂ O ₄ com 75%CO-25%CO ₂	165
Tabela 45 - Resultados de ajustes dos modelos cinéticos na redução de ZnFe ₂ O ₄ com 50%CO-50%CO ₂	166
Tabela 46 - Parâmetros cinéticos obtidos na redução de ZnFe $_2O_4$ pelo CO puro e misturas CO-CO $_2$	166
Tabela 47 - Resultados de eliminação de materiais voláteis do PAE	176

Tabela 48 - Resultados da redução de PAE pelo CO puro e misturas CO-CO ₂	177
Tabela 49 - Parâmetros cinéticos obtidos na redução do PAE pelo CO puro e misturas CO-CO ₂	179
Tabela 50 - Comparação dos parâmetros cinéticos estimados pelo modelo de reação química de interface na redução dos materiais estudados	180
Tabela 51 - Comparação dos parâmetros cinéticos estimados pelo modelo exponencial de reação contínua na dos materiais estudados	180
Tabela 52 - Resultados do planejamento experimental 3 ³ com amostras de 5g de ferrita de zinco	184
Tabela 53 - Resultados do planejamento experimental 3 ³ com amostras de 7g de ferrita de zinco	185
Tabela 54 - Resultados do planejamento experimental 3 ³ com amostras de 9g de ferrita de zinco	186
Tabela 55 - Resultados da redução de amostras de ferrita de zinco ordenadas por temperaturas de reação	187
Tabela 56 - Resultados de %Redução média de amostras de ferrita de zinco	189
Tabela 57 - Tratamento fatorial 2 ⁴ para avaliar efeitos na %Redução média	189
Tabela 58 - Resultados da avaliação de efeitos dos fatores sobre a %Redução média	190
Tabela 59 -Tratamento fatorial 2 ⁴ para avaliar efeitos na massa reduzida.	191
Tabela 60 - Resultados da avaliação de efeitos de fatores sobre a massa reduzida	192
Tabela 61 - Dados do gráfico k vs 1/T	199
Tabela 62 - Dados do gráfico a(f_C_O) vs f_C_O e $\mbox{ b}(f_{CO})$ vs f_C_O	200
Tabela 63 - Parâmetros cinéticos de redução de ZnFe ₂ O ₄ pelo CO puro e misturas CO-CO ₂ segundo ajuste da equação de Arrhenius	201
Tabela 64 - Erros ou desvios padrão totais	202

Lista de Figuras

Figura 1 - Equilíbrio da relação dos gases PCO/PCO ₂ na redução de ZnO (s) para Zn (l) e Zn (g)	45
Figura 2 - Relação dos gases PCO ₂ /PCO, no equilíbrio de redução de vários óxidos, como função do inverso da temperatura	46
Figura 3 - Diagramas de equilíbrio ZnO - Zn, Fe_2O_3 - Fe_3O_4 – FeO - Fe, em uma atmosfera de CO - CO ₂ (diagrama de Boudouard)	47
Figura 4 - Efeitos da variação de temperatura e razão molar ZnO/C, sobre a conversão de óxido de zinco: (a) Temperatura de reação e (b) Razão molar ZnO/C	49
Figura 5 - Sistema: Zn-Fe-O, mostrando a região de redução da ferrita de zinco para magnetita	55
Figura 6 - Diagrama operacional de predominância de fases do sistema Zn-C-O	56
Figura 7 - Diagrama operacional de predominância de fases do sistema Fe-C-O	57
Figura 8 - Diagrama operacional de predominância de fases do sistema Zn-Fe-C-O	59
Figura 9 - Diagrama esquemático mostrando a cinética seqüencial de redução carbotérmica da ferrita de zinco	60
Figura 10 - Efeito da variação de temperatura e razão molar ZnO.Fe ₂ O ₃ /C sobre a conversão da ferrita de zinco (a) Temperatura de reação e (b) Razão molar ZnO.Fe ₂ O ₃ /C	61
Figura 11 - Representação esquemática da migração de vacâncias de Fe ⁺² na estrutura planar da wüstita (100) usando a notação de Kröger-Vink	64
Figura 12 - Equilíbrio de fases: ferro, wüstita, magnetita, monóxido de carbono e dióxido de carbono	65
Figura 13 - Representação esquemática do crescimento de interfaces FeO densa e FeO poroso, mostrando os possíveis mecanismos de redução da ferrita de zinco	67

Figura 14 - Representação esquemática do crescimento de interfa mostrando mecanismos elementares de transporte de massa e reação química, envolvidos durante a redução da ferrita de zinco	aces 70
Figura 15 - Representação esquemática da formação de camadas de ferro denso sobre os grãos da wüstita e o crescimento da instabilidade nas pontas dos poros na forma de estruturas microdendríticas	s 71
Figura 16 - Aparato experimental de circulação dos gases no Forno Elétrico Tubular - FET: (a) Foto do FET e (b) Diagrama operacional do FET acoplado à linha de gases CO-CO ₂	87-88
Figura 17 - (a) ATD-Analise térmica diferencial e (b) ATG-Analise termogravimétrica de óxido de ferro (III), óxido de zinco e mistura equimolar, respectivamente	94
Figura 18 - Difratogramas comparativos de: (a) óxido de ferro (III) óxido de zinco e a mistura equimolar, e (b) óxido de ferro (III) e minério de ferro	, 96
Figura 19 - Difratogramas do minério de ferro mostrando (a) principais fases constituintes e (b) ajuste segundo o método quantitativo Rietveld	97
Figura 20 - Difratogramas das amostras Am1, Am2, Am3, Am4, Am5 e Am6 mostrando suas fases constituintes	99
Figura 21 - Difratograma da amostra de ferrita de zinco "Am15" ajustado segundo o método Rietveld	100
Figura 22 - Difratograma dos Pós de Aciaria Elétrica-PAE mostrando (a) principais fases constituintes e (b) ajuste segundoo método quantitativo Rietveld	101-102
Figura 23 - Imagem MEV do óxido de ferro III: (a) 10000x e (b) 2000x	104
Figura 24 - EDS da imagem MEV da Figura 23-b	104
Figura 25 - Imagem MEV do óxido de zinco: (a) 10000x e (b) 2000	Ox.
Figura 26 - EDS da imagem MEV da Figura 25-b	105
Figura 27 - Imagens MEV da amostra de ferrita de zinco "Am15": (a) 5000x e (b) 2000x	105 106
Figura 28 - EDS da imagem MEV da Figura 27-b	106
Figura 29 - Imagens MEV da amostra PAE: (a) 5000x e (b) 2000x	107

Figura 30 - EDS da imagem MEV da Figura 29-a	108
Figura 31 - Imagens MEV da amostra PR1: 100%CO-1073K-8min: (a) 2000x e (b) 5000x	109
Figura 32 - EDS da imagem MEV da Figura 31-a: (a) EDS 1 e (b) EDS 2	109
Figura 33 - Imagens MEV da amostra PR2:100%CO-1073K-56,5mi (a) 2000x-zona periférica 1, (b) 2000x-zona intermediaria (c) 2000x-zona periférica 2 e (d) 5000x-zona periférica 1 1	in: 10-111
Figura 34 - EDS da imagem MEV da Figura 33: (a) EDS 1 - EDS 2 e (b) EDS 3	111
Figura 35 - Imagens MEV da amostra PR3:100%CO-1073K-105min (a) 2000x-zona periférica (b) 2000x-zona intermediaria 1 (c) 2000x-zona intermediaria 2 e (d) 5000x-zona periférica	n: 113
Figura 36 - EDS da imagem MEV da Figura 35: (a) EDS 1 e (b) EDS 2 - EDS 3	113
Figura 37 - Imagens MEV da amostra PR4:75%CO-25%CO ₂ - 1073K-105min: (a) 2000x-zona periférica, (b) 2000x-zona intermediaria (c) 5000x-zona central e (d) 5000x-zona periférica.	115
Figura 38 - EDS da imagem MEV da Figura 37: (a) EDS1 e (b) EDS 2 - EDS 3	115
Figura 39 - Imagens MEV da amostra PR5:50%CO-50%CO ₂ - 1073K-105min: (a) 2000x - zona periférica e (b) 5000x - zona central	117
Figura 40 - EDS da imagem MEV da Figura 39-a	117
Figura 41 - Imagens MEV da amostra PR6:100%CO-1223K-8min: (a) 2000x-zona periférica, (b) 2000x-zona intermediaria (c) 5000x-zona central e (d) 5000x-zona periférica	18-119
Figura 42 - EDS das imagens MEV da Figura 41: (a) EDS 1 e (b) EDS 2	119
Figura 43 - Imagens MEV da amostra PR7:100%CO-1223K-56,5mi (a) 2000x-zona periférica 1 (b) 2000x-zona periférica 2 (c) 2000x-zona central e (d) 5000x-zona periférica 1	in: 121
Figura 44 - EDS das imagens MEV da Figura 43: (a) EDS 1 e (b) EDS 2	121

Figura 45 - Imagens MEV da amostra PR8:100%CO-1223K-105min:

 (a) 2000x-zona periférica (b) 2000x-zona intermediária (c) 2000x-zona central e (d) 5000x-zona periférica 	123
Figura 46 - EDS das imagens MEV da Figura 45	124
Figura 47 - Imagens MEV da amostra PR9:75%CO-25%CO ₂ -1223K- 105min, (a) 2000x-zona periférica, (b) 2000x-zona intermediaria (c) 2000x-zona central e (d) 5000x-zona periférica	125
Figura 48 - EDS das imagens MEV da Figura 47: (a) EDS 1 e (b) EDS 2	126
Figura 49 - Imagens MEV da amostra PR10:50%CO-50%CO ₂ -1223K- 105min, (a) 2000x-zona periférica, (b) 2000x-zona intermediaria (c) 2000x-zona central e (d) 5000x-zona periférica	127
Figura 50 - EDS das imagens MEV da Figura 49: (a) EDS 1 e (b) EDS 2	128
Figura 51 - Imagens MEV a 2000x da amostra PR11:100%CO-1373K-8min: (a) e (c) zona periférica (b) zona central e (d) zona intermediária	129
Figura 52 - EDS das imagens MEV da Figura 51: (a) EDS 1 e (b) EDS 2	129
Figura 53 - Imagens MEV a 2000x da amostra PR12:100%CO-1373K- 56,5min: (a) zona periférica, (b) zona intermediaria, e (c) e (d) zona central	-131
Figura 54 - (a) Imagem MEV da Figura 53-a mostrando finas camadas de ferro metálico : (a) 5000x (b) EDS das imagens MEV da Figura 53	131
Figura 55 - Imagens MEV da amostra PR13:100%CO-1373K-105min: (a) 2000x-zona periférica 1, (b) 2000x-zona periférica 2, (c) 2000x-zona intermediária e (d) 2000x-zona central.	132
Figura 56 - (a) Imagem MEV da Figura 55-c: (a) 5000x, mostrando finas camadas de ferro metálico e (b) EDS das imagens MEV da Figura 55	133
Figura 57 - Imagens MEV da amostra PR14:75%CO-25%CO ₂ -1373K- 105m (a) zona periférica, (b) 2000x - zona intermediária, (c) 2000x - zona central, e (d) 5000x - zona periférica.	134
Figura 58 - EDS da Imagem MEV da Figura 57: (a) EDS 1 (b) EDS 2	135
Figura 59 - Imagens MEV da amostra PR15:50%CO-50%CO ₂ -1373K-	

105min, (a) 2000x-zona periférica, (b) 2000x-zona intermediaria, (c) 2000x-zona central e (d) 5000x-zona periférica	136
Figura 60 - EDS da Imagem MEV Figura 59: (a) EDS1 e (b) EDS 2	137
Figura 61 - (a) padrão de difração limitada pela abertura da área selecionada e (b) imagem multi-feixe	139
Figura 62 - (a) Imagem MET em campo claro e seu correspondente padrão de difração de pontos e (b) Imagem METAR por contraste de fase, revelando estruturas homogêneas e planos cristalográficos na zona periférica da partícula analisada	140
Figura 63 - Imagens MET: (a) padrão ou figura de difração da partícula (1), (b) imagem MET em campo claro (c) imagem MET em campo escuro centrado da partícula (1), (d) imagem METAR por contraste por fase da zona periférica da partícula (1)	э 141
Figura 64 - (a) Imagem MET em campo claro e (b) Gráfico dos EDS das partículas assinaladas na imagem MET (a)	141
Figura 65 - (a) e (b) Imagens METAR mostrando linhas de varreduras do mapeamento elementar de Zn, Fe e O respectivamente	142
Figura 66 - Gráfico mostrando a relação inversa entre a área superficial especifica (A.S.E.) e o tamanho de partículas d(0.5) e d(0.9) respectivamente	147
Figura 67 - Gráfico do cálculo da vazão crítica para os testes de redução pelo CO puro e misturas CO-CO ₂	151
Figura 68 - Curvas de redução do ZnO pelo CO puro e misturas CO-CO ₂	153
Figura 69 - Curvas de redução do Fe_2O_3 pelo CO puro e misturas CO-CO ₂	158
Figura 70 - Curvas de redução da ZnFe ₂ O ₄ pelo CO puro e misturas CO-CO ₂	164
Figura 71 - Seqüência de redução com 100%CO:(a) 1073K, (b) 1173K, (c) 1223K, (d) 1273K, (e) 1373K e (f) velocidades médias vs temperaturas de reação 168-	-169
Figura 72 - Seqüência de redução com 75%CO-25%CO ₂ : (a) 1073K, (b) 1173K, (c) 1223K, (d) 1273K, (e) 1373K e (f) velocidades médias vs temperaturas de reação	171
Figura 73 - Seqüência de redução com 50%CO-50%CO ₂ :	

(a) 1073K, (b) 1173K, (c) 1223K, (d) 1273K , (e) 1373K e

(f) velocidades médias vs temperaturas de reação	173-174
Figura 74 - Resultados de eliminação de materiais voláteis do PAI	E 176
Figura 75 - Curvas de redução do PAE com 100%CO	178
Figura 76 - Curvas de redução do PAE com 75%CO-25%CO ₂	178
Figura 77 - Curvas de redução do PAE com 50%CO-50%CO ₂	179
Figura 78 - Correlação entre os dados observados e dados calcula da redução de ferrita de zinco de diferentes composições e massa pelo CO puro e misturas CO-CO ₂	ados as 188
Figura 79 - Gráfico do tratamento fatorial 2 ⁴ para avaliar efeitos na %Redução média	190
Figura 80 - Gráfico do tratamento fatorial 2 ⁴ para avaliar efeitos na massa reduzida	192
Figura 81 - Ajuste dos resultados segundo o modelo exponencial de reação continua a 1073K	194
Figura 82 - Ajuste dos resultados segundo o modelo exponencial de reação continua a 1223K	194
Figura 83 - Ajuste dos resultados segundo o modelo exponencial de reação continua a 1373K	195
Figura 84 - Superfícies resposta para a redução de amostras de ferrita de zinco com 100%CO	196
Figura 85 - Superfícies resposta para a redução de amostras de ferrita de zinco com 75%CO	196
Figura 86 - Superfícies resposta para a redução de amostras de ferrita de zinco com 50%CO	197
Figura 87 - Gráfico: Ink vs. %CO para 1073K	197
Figura 88 - Gráfico: Ink vs. %CO para 1223K	198
Figura 89 - Gráfico: Ink vs. %CO para 1373K	198
Figura 90 - Gráfico k vs. 1/T para diferentes composições gasosa	s 199
Figura 91 - Gráficos a(f_{CO}) vs. f_{CO} e b(f_{CO}) vs. f_{CO}	200
Figura 92 - Ajuste de Arrhenius para a redução de ferrita de zinco (a) 100%CO e (b) misturas gasosas	: 201